Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.064
Filtrar
1.
ACS Sens ; 7(11): 3560-3570, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36382569

RESUMO

Current tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detect either the constituent nucleic acids/proteins of the viral particles or antibodies specific to the virus, but cannot provide information about viral neutralization by an antibody and the efficacy of an antibody. Such information is important about individuals' vulnerability to severe symptoms or their likelihood of showing no symptoms. We immobilized online SARS-CoV-2 spike (S1) protein and angiotensin-converting enzyme 2 (ACE2) into separate surface plasmon resonance (SPR) channels of a tris-nitrilotriacetic acid (tris-NTA) chip to simultaneously detect the anti-S1 antibody and viral particles in serum samples. In addition, with a high-molecular-weight-cutoff filter, we separated the neutralized viral particles from the free antibody molecules and used a sensing channel immobilized with Protein G to determine antibody-neutralized viral particles. The optimal density of probe molecules in each fluidic channel can be precisely controlled through the closure and opening of the specific ports. By utilizing the high surface density of ACE2, multiple assays can be carried out without regenerations. These three species can be determined with a short analysis time (<12 min per assay) and excellent sensor-to-sensor/cycle-to-cycle reproducibility (RSD < 5%). When coupled with an autosampler, continuous assays can be performed in an unattended manner at a single chip for up to 6 days. Such a sensor capable of assaying serum samples containing the three species at different levels provides additional insights into the disease status and immunity of persons being tested, which should be helpful for containing the SARS-CoV-2 spread during the era of incessant viral mutations.


Assuntos
COVID-19 , SARS-CoV-2 , Ressonância de Plasmônio de Superfície , Humanos , Enzima de Conversão de Angiotensina 2 , Anticorpos Antivirais , COVID-19/diagnóstico , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus , Vírion/isolamento & purificação
2.
Sci Rep ; 12(1): 14651, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030323

RESUMO

SARS-CoV-2 is an RNA enveloped virus responsible for the COVID-19 pandemic that conducted in 6 million deaths worldwide so far. SARS-CoV-2 particles are mainly composed of the 4 main structural proteins M, N, E and S to form 100 nm diameter viral particles. Based on productive assays, we propose an optimal transfected plasmid ratio mimicking the viral RNA ratio in infected cells. This allows SARS-CoV-2 Virus-Like Particle (VLPs) formation composed of the viral structural proteins M, N, E and mature S. Furthermore, fluorescent or photoconvertible VLPs were generated by adding a fluorescent protein tag on N or M mixing with unlabeled viral proteins and characterized by western blots, atomic force microscopy coupled to fluorescence and immuno-spotting. Thanks to live fluorescence and super-resolution microscopies, we quantified VLPs size and concentration. SARS-CoV-2 VLPs present a diameter of 110 and 140 nm respectively for MNE-VLPs and MNES-VLPs with a concentration of 10e12 VLP/ml. In this condition, we were able to establish the incorporation of the Spike in the fluorescent VLPs. Finally, the Spike functionality was assessed by monitoring fluorescent MNES-VLPs docking and internalization in human pulmonary cells expressing or not the receptor hACE2. Results show a preferential maturation of S on N(GFP) labeled VLPs and an hACE2-dependent VLP internalization and a potential fusion in host cells. This work provides new insights on the use of non-fluorescent and fluorescent VLPs to study and visualize the SARS-CoV-2 viral life cycle in a safe environment (BSL-2 instead of BSL-3). Moreover, optimized SARS-CoV-2 VLP production can be further adapted to vaccine design strategies.


Assuntos
SARS-CoV-2 , Vírion , Fluorescência , Humanos , SARS-CoV-2/isolamento & purificação , Proteínas Estruturais Virais , Vírion/isolamento & purificação
3.
Proc Natl Acad Sci U S A ; 119(31): e2119439119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895681

RESUMO

Archaeal viruses with a spindle-shaped virion are abundant and widespread in extremely diverse environments. However, efforts to obtain the high-resolution structure of a spindle-shaped virus have been unsuccessful. Here, we present the structure of SSV19, a spindle-shaped virus infecting the hyperthermophilic archaeon Sulfolobus sp. E11-6. Our near-atomic structure reveals an unusual sevenfold symmetrical virus tail consisting of the tailspike, nozzle, and adaptor proteins. The spindle-shaped capsid shell is formed by seven left-handed helical strands, constructed of the hydrophobic major capsid protein, emanating from the highly glycosylated tail assembly. Sliding between adjacent strands is responsible for the variation of a virion in size. Ultrathin sections of the SSV19-infected cells show that SSV19 virions adsorb to the host cell membrane through the tail after penetrating the S-layer. The tailspike harbors a putative endo-mannanase domain, which shares structural similarity to a Bacteroides thetaiotaomicro endo-mannanase. Molecules of glycerol dibiphytanyl glycerol tetraether lipid were observed in hydrophobic clefts between the tail and the capsid shell. The nozzle protein resembles the stem and clip domains of the portals of herpesviruses and bacteriophages, implying an evolutionary relationship among the archaeal, bacterial, and eukaryotic viruses.


Assuntos
Fuselloviridae , Sulfolobus , Proteínas do Capsídeo/química , Fuselloviridae/química , Fuselloviridae/genética , Fuselloviridae/isolamento & purificação , Genoma Viral , Glicerol , Sulfolobus/virologia , Vírion/química , Vírion/genética , Vírion/isolamento & purificação
4.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215905

RESUMO

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in this cell type and engage the cellular machinery in transcription and translation. However, viral protein expression in erythrocytes was rare and not required for development of disease and mortality. Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion, Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but do not appear to significantly contribute to ISAV replication. We discuss the implications of our findings for infection dynamics and pathogenesis of infectious salmon anaemia.


Assuntos
Eritrócitos/virologia , Doenças dos Peixes/virologia , Isavirus/fisiologia , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Células Endoteliais/virologia , Doenças dos Peixes/sangue , Isavirus/genética , Isavirus/isolamento & purificação , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Salmo salar/sangue , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/isolamento & purificação , Vírion/fisiologia , Replicação Viral
5.
Virology ; 568: 23-30, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077959

RESUMO

The hydrophobicity of virions is a major physicochemical parameter regulating their dissemination in humans and the environment. But knowledge about potential factors modulating virion hydrophobicity is limited due to the lack of suitable quantifying methods. It has been recently shown that sodium dodecyl-sulfate (SDS) labels capsid hydrophobic domains in capillary zone electrophoresis of non-enveloped virions, altering their electrophoretic mobility (µ) in proportion to their hydrophobicity. This was exploited here to quantify the hydrophobicity of GA, Qß and MS2 phages as a function of pH. By subtracting the native from the SDS-modified µ of phages, measured in the absence and presence of SDS, respectively, we defined a "hydrophobic index" increasing with virion hydrophobicity. Using this approach, we found that the virion hydrophobicity changes at a virion-specific pivotal pH. This procedure may be applied under various physicochemical conditions and to diverse non-enveloped virus families of significance to human health and the environment.


Assuntos
Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Vírion/química , Algoritmos , Sequência de Aminoácidos , Bacteriófagos/química , Humanos , Modelos Teóricos , Dodecilsulfato de Sódio , Proteínas Virais/química , Vírion/isolamento & purificação , Vírion/ultraestrutura
6.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34738886

RESUMO

Nyamiviridae is a family of viruses in the order Mononegavirales, with unsegmented (except for members of the genus Tapwovirus), negative-sense RNA genomes of 10-13 kb. Nyamviruses have a genome organisation and content similar to that of other mononegaviruses. Nyamiviridae includes several genera that form monophyletic clades on phylogenetic analysis of the RNA polymerase. Nyamiviruses have been found associated with diverse invertebrates as well as land- and seabirds. Members of the genera Nyavirus and Socyvirus produce enveloped, spherical virions. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nyamiviridae, which is available at ictv.global/report/nyamiviridae.


Assuntos
Mononegavirais/classificação , Mononegavirais/isolamento & purificação , Animais , Genoma Viral , Invertebrados/virologia , Mononegavirais/genética , Filogenia , RNA Viral/genética , Proteínas Virais/genética , Vírion/classificação , Vírion/genética , Vírion/isolamento & purificação
7.
Sci Rep ; 11(1): 21284, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711888

RESUMO

We quantified the presence of SARS-CoV-2 RNA in the air of different hospital settings and the autopsy room of the largest medical centre in Sao Paulo, Brazil. Real-time reverse-transcription PCR was used to determine the presence of the envelope protein of SARS-CoV-2 and the nucleocapsid protein genes. The E-gene was detected in 5 out of 6 samples at the ICU-COVID-19 ward and in 5 out of 7 samples at the ward-COVID-19. Similarly, in the non-dedicated facilities, the E-gene was detected in 5 out of 6 samples collected in the ICU and 4 out of 7 samples in the ward. In the necropsy room, 6 out of 7 samples were positive for the E-gene. When both wards were compared, the non-COVID ward presented a significantly higher concentration of the E-gene than in the COVID-19 ward (p = 0.003). There was no significant difference in E-gene concentration between the ICU-COVID-19 and the ICU (p = 0.548). Likewise, there was no significant difference among E-gene concentrations found in the autopsy room versus the ICUs and wards (dedicated or not) (p = 0.245). Our results show the widespread presence of aerosol contamination in different hospital units.


Assuntos
Microbiologia do Ar , COVID-19/virologia , Hospitais , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Aerossóis , Autopsia , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Genoma Viral , Unidades Hospitalares , Humanos , Unidades de Terapia Intensiva , Pandemias , Serviço Hospitalar de Patologia , RNA Viral/análise , RNA Viral/genética , Vírion/genética , Vírion/isolamento & purificação
8.
Bioengineered ; 12(2): 9189-9215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709987

RESUMO

Rapid, inexpensive, and laboratory-free diagnostic of viral pathogens is highly critical in controlling viral pandemics. In recent years, nanopore-based sensors have been employed to detect, identify, and classify virus particles. By tracing ionic current containing target molecules across nano-scale pores, nanopore sensors can recognize the target molecules at the single-molecule level. In the case of viruses, they enable discrimination of individual viruses and obtaining important information on the physical and chemical properties of viral particles. Despite classical benchtop virus detection methods, such as amplification techniques (e.g., PCR) or immunological assays (e.g., ELISA), that are mainly laboratory-based, expensive and time-consuming, nanopore-based sensing methods can enable low-cost and real-time point-of-care (PoC) and point-of-need (PoN) monitoring of target viruses. This review discusses the limitations of classical virus detection methods in PoN virus monitoring and then provides a comprehensive overview of nanopore sensing technology and its emerging applications in quantifying virus particles and classifying virus sub-types. Afterward, it discusses the recent progress in the field of nanopore sensing, including integrating nanopore sensors with microfabrication technology, microfluidics and artificial intelligence, which have been demonstrated to be promising in developing the next generation of low-cost and portable biosensors for the sensitive recognition of viruses and emerging pathogens.


Assuntos
Técnicas Biossensoriais , Nanoporos , Vírion/isolamento & purificação , Aprendizado de Máquina , Microfluídica
9.
Sci Rep ; 11(1): 19851, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615923

RESUMO

Introducing bacteriophage MS2 virus-like particles (VLPs) as gene and drug delivery tools increases the demand for optimizing their production and purification procedure. PEG precipitation method is used efficiently to purify VLPs, while the effects of pH and different electrolytes on the stability, size, and homogeneity of purified MS2 VLPs, and the encapsulated RNA sequences remained to be elucidated. In this regard, a vector, capable of producing VLP with an shRNA packed inside was prepared. The resulting VLPs in different buffers/solutions were assessed for their size, polydispersity index, and ability to protect the enclosed shRNA. We report that among Tris, HEPES, and PBS, with or without NaNO3, and also NaNO3 alone in different pH and ionic concentrations, the 100 mM NaNO3-Tris buffer with pH:8 can be used as a new and optimal MS2 VLP production buffer, capable of inhibiting the VLPs aggregation. These VLPs show a size range of 27-30 nm and suitable homogeneity with minimum 12-month stability at 4 °C. Moreover, the resulting MS2 VLPs were highly efficient and stable for at least 48 h in conditions similar to in vivo. These features of MS2 VLPs produced in the newly introduced buffer make them an appropriate candidate for therapeutic agents' delivery.


Assuntos
Levivirus/isolamento & purificação , Levivirus/fisiologia , Vírion/isolamento & purificação , Vírion/fisiologia , Soluções Tampão , Linhagem Celular , Fracionamento Químico/métodos , Humanos , Concentração de Íons de Hidrogênio , Levivirus/ultraestrutura , Nitratos/química , Tamanho da Partícula , Vírion/ultraestrutura
10.
Opt Express ; 29(16): 25745-25761, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614897

RESUMO

In spite of tremendous advancements in modern diagnostics, there is a dire need for reliable, label-free detection of highly contagious pathogens like viruses. In view of the limitations of existing diagnostic techniques, the present theoretical study proposes a novel scheme of detecting virus-like particles employing whispering gallery and quasi-whispering gallery resonant modes of a composite optical system. Whereas whispering gallery mode (WGM) resonators are conventionally realized using micro-disk, -ring, -toroid or spherical structures, the present study utilizes a rotationally symmetric array of silicon nanowires which offers higher sensitivity compared to the conventional WGM resonator while detecting virus-like particles. Notwithstanding the relatively low quality factor of the system, the underlying multiple-scattering mediated photon entrapment, coupled with peripheral total-internal reflection, results in high fidelity of the system against low signal-to-noise ratio. Finite difference time domain based numerical analysis has been performed to correlate resonant modes of the array with spatial location of the virus. The correlation has been subsequently utilized for statistical analysis of simulated test cases. Assuming detection to be limited by resolution of the measurement system, results of the analysis suggest that for only about 5% of the simulate test cases the resonant wavelength shift lies within the minimum detection range of 0.001-0.01 nm. For a single virus of 160 nm diameter, more than 8 nm shift of the resonant mode and nearly 100% change of quality factor are attained with the proposed nanowire array based photonic structure.


Assuntos
Modelos Teóricos , Nanofios , Dispositivos Ópticos , Silício , Vírion/isolamento & purificação , Óptica e Fotônica/métodos , Razão Sinal-Ruído , Vírion/ultraestrutura
11.
Viruses ; 13(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578398

RESUMO

BACKGROUND: There is increasing evidence that identification of SARS-CoV-2 virions by transmission electron microscopy could be misleading due to the similar morphology of virions and ubiquitous cell structures. This study thus aimed to establish methods for indisputable proof of the presence of SARS-CoV-2 virions in the observed tissue. METHODS: We developed a variant of the correlative microscopy approach for SARS-CoV-2 protein identification using immunohistochemical labelling of SARS-CoV-2 proteins on light and electron microscopy levels. We also performed immunogold labelling of SARS-CoV-2 virions. RESULTS: Immunohistochemistry (IHC) of SARS-CoV-2 nucleocapsid proteins and subsequent correlative microscopy undoubtedly proved the presence of SARS-CoV-2 virions in the analysed human nasopharyngeal tissue. The presence of SARS-CoV-2 virions was also confirmed by immunogold labelling for the first time. CONCLUSIONS: Immunoelectron microscopy is the most reliable method for distinguishing intracellular viral particles from normal cell structures of similar morphology and size as virions. Furthermore, we developed a variant of correlative microscopy that allows pathologists to check the results of IHC performed first on routinely used paraffin-embedded samples, followed by semithin, and finally by ultrathin sections. Both methodological approaches indisputably proved the presence of SARS-CoV-2 virions in cells.


Assuntos
COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Vírion/isolamento & purificação , Proteínas do Nucleocapsídeo de Coronavírus/análise , Humanos , Imuno-Histoquímica , Microscopia Imunoeletrônica , Nasofaringe/virologia , Fosfoproteínas/análise , SARS-CoV-2/ultraestrutura , Vírion/ultraestrutura
12.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436053

RESUMO

The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.


Assuntos
Nanopartículas Metálicas/química , SARS-CoV-2/fisiologia , Ressonância de Plasmônio de Superfície/métodos , Vírion/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/fisiologia , Humanos , Limite de Detecção , Orthomyxoviridae/isolamento & purificação , Orthomyxoviridae/fisiologia , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/isolamento & purificação , Vírion/química
13.
Nat Commun ; 12(1): 4317, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262053

RESUMO

The COVID-19 pandemic exposed difficulties in scaling current quantitative PCR (qPCR)-based diagnostic methodologies for large-scale infectious disease testing. Bottlenecks include lengthy multi-step processes for nucleic acid extraction followed by qPCR readouts, which require costly instrumentation and infrastructure, as well as reagent and plastic consumable shortages stemming from supply chain constraints. Here we report an Oil Immersed Lossless Total Analysis System (OIL-TAS), which integrates RNA extraction and detection onto a single device that is simple, rapid, cost effective, and requires minimal supplies and infrastructure to perform. We validated the performance of OIL-TAS using contrived SARS-CoV-2 viral particle samples and clinical nasopharyngeal swab samples. OIL-TAS showed a 93% positive predictive agreement (n = 57) and 100% negative predictive agreement (n = 10) with clinical SARS-CoV-2 qPCR assays in testing clinical samples, highlighting its potential to be a faster, cheaper, and easier-to-deploy alternative for infectious disease testing.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/economia , Teste de Ácido Nucleico para COVID-19/instrumentação , Desenho de Equipamento , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe/virologia , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade , Fatores de Tempo , Vírion/genética , Vírion/isolamento & purificação
14.
Anal Bioanal Chem ; 413(22): 5669-5678, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34244834

RESUMO

Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.


Assuntos
Vírus do Mosaico do Tabaco/isolamento & purificação , Vírion/isolamento & purificação , Produtos Agrícolas/virologia , Espectroscopia Dielétrica , Microscopia Eletrônica de Varredura , Concentração Osmolar , Eletricidade Estática
15.
JAMA Ophthalmol ; 139(9): 1015-1021, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323931

RESUMO

Importance: The presence of the SARS-CoV-2 virus in the retina of deceased patients with COVID-19 has been suggested through real-time reverse polymerase chain reaction and immunological methods to detect its main proteins. The eye has shown abnormalities associated with COVID-19 infection, and retinal changes were presumed to be associated with secondary microvascular and immunological changes. Objective: To demonstrate the presence of presumed SARS-CoV-2 viral particles and its relevant proteins in the eyes of patients with COVID-19. Design, Setting, and Participants: The retina from enucleated eyes of patients with confirmed COVID-19 infection were submitted to immunofluorescence and transmission electron microscopy processing at a hospital in São Paulo, Brazil, from June 23 to July 2, 2020. After obtaining written consent from the patients' families, enucleation was performed in patients deceased with confirmed SARS-CoV-2 infection. All patients were in the intensive care unit, received mechanical ventilation, and had severe pulmonary involvement by COVID-19. Main Outcomes and Measures: Presence of presumed SARS-CoV-2 viral particles by immunofluorescence and transmission electron microscopy processing. Results: Three patients who died of COVID-19 were analyzed. Two patients were men, and 1 was a woman. The age at death ranged from 69 to 78 years. Presumed S and N COVID-19 proteins were seen by immunofluorescence microscopy within endothelial cells close to the capillary flame and cells of the inner and the outer nuclear layers. At the perinuclear region of these cells, it was possible to observe by transmission electron microscopy double-membrane vacuoles that are consistent with the virus, presumably containing COVID-19 viral particles. Conclusions and Relevance: The present observations show presumed SARS-CoV-2 viral particles in various layers of the human retina, suggesting that they may be involved in some of the infection's ocular clinical manifestations.


Assuntos
COVID-19/virologia , Retina/virologia , SARS-CoV-2/isolamento & purificação , Vírion/isolamento & purificação , Idoso , COVID-19/diagnóstico , COVID-19/mortalidade , Feminino , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Retina/ultraestrutura , SARS-CoV-2/ultraestrutura , Vírion/ultraestrutura
16.
Viruses ; 13(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069520

RESUMO

Virus particle concentration is a critical piece of information for virology, viral vaccines and gene therapy research. We tested a novel nanoparticle counting device, "Videodrop", for its efficacy in titering and characterization of virus particles. The Videodrop nanoparticle counter is based on interferometric light microscopy (ILM). The method allows the detection of particles under the diffraction limit capabilities of conventional light microscopy. We analyzed lenti-, adeno-, and baculovirus samples in different concentrations and compared the readings against traditional titering and characterization methods. The tested Videodrop particle counter is especially useful when measuring high-concentration purified virus preparations. Certain non-purified sample types or small viruses may be impossible to characterize or may require the use of standard curve or background subtraction methods, which increases the duration of the analysis. Together, our testing shows that Videodrop is a reasonable option for virus particle counting in situations where a moderate number of samples need to be analyzed quickly.


Assuntos
Microscopia de Interferência/métodos , Vírion/isolamento & purificação , Vírus/classificação , Vírus/isolamento & purificação , Microscopia de Interferência/instrumentação , Carga Viral/métodos
17.
Biotechnol Bioeng ; 118(8): 3251-3262, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34129733

RESUMO

Due to the high variation in viral surface properties, a platform method for virus purification is still lacking. A potential alternative to the high-cost conventional methods is aqueous two-phase systems (ATPSs). However, optimizing virus purification in ATPS requires a large experimental design space, and the optimized systems are generally found to operate at high ATPS component concentrations. The high concentrations capitalize on hydrophobic and electrostatic interactions to obtain high viral particle yields. This study investigated using osmolytes as driving force enhancers to reduce the high concentration of ATPS components while maintaining high yields. The partitioning behavior of porcine parvovirus (PPV), a nonenveloped mammalian virus, and human immunodeficiency virus-like particle (HIV-VLP), a yeast-expressed enveloped VLP, were studied in a polyethylene glycol (PEG) 12 kDa-citrate system. The partitioning of the virus modalities was enhanced by osmoprotectants glycine and betaine, while trimethylamine N-oxide was ineffective for PPV. The increased partitioning to the PEG-rich phase pertained only to viruses, resulting in high virus purification. Recoveries were 100% for infectious PPV and 92% for the HIV-VLP, with high removal of the contaminant proteins and more than 60% DNA removal when glycine was added. The osmolyte-induced ATPS demonstrated a versatile method for virus purification, irrespective of the expression system.


Assuntos
HIV-1/isolamento & purificação , Parvovirus Suíno/isolamento & purificação , Vírion/isolamento & purificação , Animais , Linhagem Celular , HIV-1/química , Humanos , Parvovirus Suíno/química , Suínos , Vírion/química
18.
Viruses ; 13(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804134

RESUMO

In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense. Phylogenetic analysis performed either on full-length genome or on coat protein, replication associated protein (Rep), and MP sequences did not endorse the inclusion of this virus in any of the established genera in the family Geminiviridae. A survey of 55 plants revealed that the virus is widespread in Apulia (Italy) with 91% of the samples testing positive, although no correlation of OEGV with a disease or specific symptoms was encountered. Southern blot assay suggested that the virus is not integrated in the olive genome. The study of OEGV-derived siRNA obtained from small RNA libraries of leaves and fruits of three different cultivars, showed that the accumulation of the two genomic components is influenced by the plant genotype while virus-derived-siRNA profile is in line with other geminivirids reported in literature. Single-nucleotide polymorphism (SNP) analysis unveiled a low intra-specific variability.


Assuntos
Geminiviridae/classificação , Geminiviridae/patogenicidade , Genoma Viral , Olea/genética , Olea/virologia , Filogenia , Vírus de DNA/genética , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Plantas/virologia , Vírion/genética , Vírion/isolamento & purificação
19.
PLoS One ; 16(4): e0249525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33844696

RESUMO

Infectious respiratory particles expelled by SARS-CoV-2 positive patients are attributed to be the key driver of COVID-19 transmission. Understanding how and by whom the virus is transmitted can help implement better disease control strategies. Here we have described the use of a noninvasive mask sampling method to detect and quantify SARS-CoV-2 RNA in respiratory particles expelled by COVID-19 patients and discussed its relationship to transmission risk. Respiratory particles of 31 symptomatic SARS-CoV-2 positive patients and 31 asymptomatic healthy volunteers were captured on N-95 masks layered with a gelatin membrane in a 30-minute process that involved talking/reading, coughing, and tidal breathing. SARS-CoV-2 viral RNA was detected and quantified using rRT-PCR in the mask and in concomitantly collected nasopharyngeal swab (NPS) samples. The data were analyzed with respect to patient demographics and clinical presentation. Thirteen of 31(41.9%) patients showed SARS-COV-2 positivity in both the mask and NPS samples, while 16 patients were mask negative but NPS positive. Two patients were both mask and NPS negative. All healthy volunteers except one were mask and NPS negative. The mask positive patients had significantly lower NPS Ct value (26) compared to mask negative patients (30.5) and were more likely to be rapid antigen test positive. The mask positive patients could be further grouped into low emitters (expelling <100 viral copies) and high emitters (expelling >1000 viral copies). The study presents evidence for variation in emission of SARS-CoV-2 virus particles by COVID-19 patients reflecting differences in infectivity and transmission risk among individuals. The results conform to reported secondary infection rates and transmission and also suggest that mask sampling could be explored as an effective tool to assess individual transmission risks, at different time points and during different activities.


Assuntos
COVID-19/diagnóstico , Respiradores N95/virologia , SARS-CoV-2/isolamento & purificação , COVID-19/transmissão , COVID-19/virologia , Tosse , Humanos , RNA Viral/análise , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Vírion/isolamento & purificação
20.
PLoS One ; 16(4): e0250516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891631

RESUMO

Zika virus is a Flavivirus, transmitted via Aedes mosquitos, that causes a range of symptoms including Zika congenital syndrome. Zika has posed a challenging situation for health, public and economic sectors of affected countries. To quantitate Zika virus neutralizing antibody titers in serum samples, we developed a high throughput plate based Zika virus reporter virus particle (RVP) assay that uses an infective, non-replicating particle encoding Zika virus surface proteins and capsid (CprME) and a reporter gene (Renilla luciferase). This is the first characterization of a Zika virus RVP assay in 384-well format using a Dengue replicon Renilla reporter construct. Serially diluted test sera were incubated with RVPs, followed by incubation with Vero cells. RVPs that have not been neutralized by antibodies in the test sera entered the cells and expressed Renilla luciferase. Quantitative measurements of neutralizing activity were determined using a plate-based assay and commercially available substrate. The principle of limiting the infection to a single round increases the precision of the assay measurements. RVP log10EC50 titers correlated closely with titers determined using a plaque reduction neutralization test (PRNT) (R2>95%). The plate-based Zika virus RVP assay also demonstrated high levels of precision, reproducibility and throughput. The assay employs identical reagents for human, rhesus macaque and mouse serum matrices. Spiking studies indicated that the assay performs equally well in different species, producing comparable titers irrespective of the serum species. The assay is conducted in 384-well plates and can be automated to simultaneously achieve high throughput and high reproducibility.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Animais , Anticorpos Bloqueadores/imunologia , Linhagem Celular , Chlorocebus aethiops/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/patogenicidade , Flavivirus/isolamento & purificação , Flavivirus/patogenicidade , Genes Reporter/genética , Genes Reporter/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Macaca mulatta/imunologia , Macaca mulatta/virologia , Camundongos , Testes de Neutralização , Células Vero/virologia , Vírion/genética , Vírion/isolamento & purificação , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...